2.3 Symbolic Data
2.3.1 Quotation
本小结主要讲符号的引用,之前都是在对数字进行处理,现在要考虑对实际变量的处理。
eq?
可以用于判断两个符号的是否相等。
从而可以定义memq
,用于判断给定符号是否在特定list中,如果不是返回nil,否则返回以该符号为首的sublist。
(define (memq item x) |
2.3.2 Example:Symbol Differentiation
本节用求微分举例,这种带符号的求导与抽象数据的处理不同,是带符号的。只利用了最简单的4个求导规则
首先定义如下基本操作(define (variable? e)
(symbol? x))
(define (same-variable? v1 v2)
(and (varaible? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2)
(list '+ a1 a2))
(define (make-product m1 m2)
(list '* m1 m2))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s)
(cadr s))
(define (augend s)
(caddr s)) ; 注意s是个list,所以要取caddr而不是cddr
(define (product? x)
(and (pair? x) (eq? (car x) '+)))
(define (multiplier p)
(cadr p))
(define (multiplicand p)
(caddr p))
随后就可以根据定义的求导法则递归展开
(define (deriv exp var) |
以上会出现一个问题,就是并没有化简到最简单,比如
(define '(+ x 3) 'x) |
的结果显示为(+ 1 0)
解决这个问题在于改变make-sum
的行为即可,deriv
不用改变。(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (make-product m1 m1)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
习题2.56 实现多项式求导规则(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0)
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var))
((product? exp)
(make-product (deriv (multiplier exp) var)
(deriv (multiplicand exp) var)))))
((exponentiation? exp) ; 需要新增获取基本元素的函数以及构造函数
(let ((n (exponent exp))
(u (base exp)))
(make-product
n
(make-product (make-exponentiation u (- n 1))
(deriv u var)))))
(else (error "unknown expression type -- DERIV" exp))))
(define (make-exmponentiation base exponent)
(cond ((= exponent 0)
1)
((= exponent 1)
base)
(else
(list '** base exponent))))
(define (exponent exp)
(caddr exp))
(define (base exp)
(cadr exp))
(define (exponentiation? exp)
(and (pair? exp) (eq? (car exp) `**)))